The influence of fruit load on the tomato pericarp metabolome in a Solanum chmielewskii introgression line population.
نویسندگان
چکیده
It has been recently demonstrated, utilizing interspecific introgression lines of tomato, generated from the cross between Solanum lycopersicum and the wild species Solanum pennellii, that the efficiency of photosynthate partitioning exerts a considerable influence on the metabolic composition of tomato fruit pericarp. In order to further evaluate the influence of source-sink interaction, metabolite composition was determined by gas chromatography-mass spectrometry in a different population. For this purpose, we used 23 introgression lines resulting from an interspecific cross between S. lycopersicum and the wild species Solanum chmielewskii under high (unpruned trusses) and low (trusses pruned to one fruit) fruit load conditions. Following this strategy, we were able to contrast the metabolite composition of fruits from plants cultivated at both fruit loads as well as to compare the network behavior of primary metabolism in the introgression line population. The study revealed that while a greater number of metabolic quantitative trait loci were observed under high fruit load (240) than under low fruit load (128) cultivations, the levels of metabolites were more highly correlated under low fruit load cultivation. Finally, an analysis of genotype × fruit load interactions indicated a greater influence of development and cultivation than genotype on fruit composition. Comparison with previously documented transcript profiles from a subset of these lines revealed that changes in metabolite levels did not correlate with changes in the levels of genes associated with their metabolism. These findings are discussed in the context of our current understanding of the genetic and environmental influence on metabolic source-sink interactions in tomato, with particular emphasis given to fruit amino acid content.
منابع مشابه
Identification of Loci Affecting Accumulation of Secondary Metabolites in Tomato Fruit of a Solanum lycopersicum × Solanum chmielewskii Introgression Line Population
Semi-polar metabolites such as flavonoids, phenolic acids, and alkaloids are very important health-related compounds in tomato. As a first step to identify genes responsible for the synthesis of semi-polar metabolites, quantitative trait loci (QTLs) that influence the semi-polar metabolite content in red-ripe tomato fruit were identified, by characterizing fruits of a population of introgressio...
متن کاملCombining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration
A mechanistic model predicting the accumulation of tomato fruit sugars was developed in order (i) to dissect the relative influence of three underlying processes: assimilate supply (S), metabolic transformation of sugars into other compounds (M), and dilution by water uptake (D); and (ii) to estimate the genetic variability of S, M, and D. The latter was estimated in a population of 20 introgre...
متن کاملBiochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color.
The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum 'Moneyberg' and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines had a homozygous S. chmielewskii introgression on the short arm of chromosome 1, consistent with t...
متن کاملGenetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection
Throughout tomato domestication, a large increase in fruit size was associated with a loss of dry matter and sugar contents. This study aims to dissect the contributions of genetic variation and the physiological processes underlying the relationships between fruit growth and the accumulation of dry matter and sugars. Fruit quality traits and physiological parameters were measured on 20 introgr...
متن کاملGenotype-dependent response to carbon availability in growing tomato fruit.
Tomato fruit growth and composition depend on both genotype and environment. This paper aims at studying how fruit phenotypic responses to changes in carbon availability can be influenced by genotype, and at identifying genotype-dependent and -independent changes in gene expression underlying variations in fruit growth and composition. We grew a parental line (Solanum lycopersicum) and an intro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 154 3 شماره
صفحات -
تاریخ انتشار 2010